Fast Site-Directed Mutagenesis Kit

Rapid single-site or multi-site mutation on the target gene in the target vector.

Site-directed mutagenesis in vitro is an important experimental method in various fields of biology and medicine, which is mostly used to modify and optimize target genes, explore the regulatory sites of promoters, as well as study the complex relationship between protein structure and function. The kit adopts the current leading technology to directly carry out single site mutation, multi-site mutation as well as insertion or deletion mutation on the target gene. The mutation rate of single-site mutation can reach more than 90%. In addition, unlike the traditional mutation kits which require multiple rounds of PCR, sub-cloning and other time-consuming and labor-consuming steps, the operation of the kit is simpler, and only four steps are needed to construct the mutant strain.

Cat. No Packing Size
44992901 20 rxn

 

 


Product Detail

Product Tags

Features

■ Simple and fast: The kit adopts non-strand substitution plasmid amplification technology. It only needs 4 steps to realize the transformation from wild-type strain to mutant strain, without the time-consuming and labor-consuming steps such as multiple rounds of PCR and sub-cloning.
■ High-efficiency primer: The kit adopts the principle of partially overlapping primer design, so that more mutant plasmids can be obtained by amplification.
■ Widely applicable: The kit can not only carry out single-site mutation, but also multi-site mutation. It can mutate up to 5 sites.
■ Strong adaptability: The kit can carry out site-directed mutation on plasmids with a maximum size of 10 kb, basically covering all commonly used plasmids.
■ High mutation rate: the kit has the function of double digestion of methylated plasmid templates in vitro and in vivo, ensuring higher mutation rate.

Site-Mutation Reaction Setup and PCR Program

■ For single primer multi-site mutation, the mutation rate will be lower than that of single site mutation because of the increased number of mutation sites. According to our experimental data, when the number of mutation sites reaches 5, the mutation positive rate will be reduced to 50%. Therefore, in this case, it is recommended to increase the number of clones verified.
■ The kit supports multi-primer multi-site mutation, so that mutation experiments can be simultaneously carried out in a wider range of genes. The upper limit of the number of mutation sites is still 5.
■ It is suggested that the control plasmids and primers supplied in the kit should be applied when carrying out new mutation experiments so as to facilitate analysis of experimental problems.

Fast Site-Directed Mutagenesis Kit Fast Site-Directed Mutagenesis Kit

All the products can be customized for ODM/OEM. For details, please click Customized Service(ODM/OEM)

FAQ

Q: No amplification bands

A-1  Template

■ The template contains protein impurities or Taq inhibitors, etc. ——Purify DNA template, remove protein impurities or extract template DNA with purification kits.

■ The denaturation of template is not complete ——Appropriately increase denaturation temperature and prolong denaturation time.

■ Template degradation ——Re-prepare the template.

A-2  Primer

■ Poor quality of primers ——Re-synthesize the primer.

■ Primer degradation ——Aliquot the high concentration primers into small volume for preservation. Avoid multiple freezing and thawing or long-term 4°C cryopreserved.

■ Inproper design of primers (e.g. primer length not sufficient, dimer formed between primers, etc.) -Redesign primers (avoid formation of primer dimer and secondary structure)

A-3   Mg2+concentration

■ Mg2+ concentration is too low ——Properly increase Mg2+ concentration: Optimize the Mg2+ concentration by a series of reactions from 1 mM to 3 mM with an interval of 0.5 mM to determine the optimal Mg2+ concentration for each template and primer.

A-4   Annealing temperature

■ The high annealing temperature affects the binding of primer and template. ——Reduce the annealing temperature and optimize the condition with a gradient of 2°C.

A-5   Extension time

■ Short extension time——Increase extension time.

Q: False positive

Phenomena: Negative samples also show the target sequence bands.

A-1   Contamination of PCR

■ Cross contamination of target sequence or amplification products ——Carefully not to pipet the sample containing target sequence in the negative sample or spill them out of the centrifuge tube. The reagents or equipment should be autoclaved to eliminate existing nucleic acids, and the existence of contamination should be determined through negative control experiments.

■ Reagent contamination ——Aliquot the reagents and store at low temperature.

A-2   Primer

■ Mg2+ concentration is too low ——Properly increase Mg2+ concentration: Optimize the Mg2+ concentration by a series of reactions from 1 mM to 3 mM with an interval of 0.5 mM to determine the optimal Mg2+ concentration for each template and primer.

■ Improper primer design, and the target sequence has homology with the non-target sequence. ——Re-design primers.

Q: Non-specific amplification

Phenomena: The PCR amplification bands are inconsistent with the expected size, either large or small, or sometimes both specific amplification bands and non-specific amplification bands occur.

A-1  Primer

■ Poor primer specificity

——Re-design primer.

■ The primer concentration is too high ——Properly increase the denaturation temperature and prolong denaturation time.

A-2   Mg2+ concentration

■ The Mg2+ concentration is too high ——Properly reduce the Mg2+ concentration: Optimize the Mg2+ concentration by a series of reactions from 1 mM to 3 mM with an interval of 0.5 mM to determine the optimal Mg2+ concentration for each template and primer.

A-3   Thermostable polymerase

■ Excessive enzyme amount ——Reduce enzyme amount appropriately at intervals of 0.5 U.

A-4   Annealing temperature

■ The annealing temperature is too low ——Appropriately increase the annealing temperature or adopt the two-stage annealing method

A-5   PCR cycles

■ Too many PCR cycles ——Reduce the number of PCR cycles.

Q: Patchy or smear bands

A-1  Primer ——Poor specificity ——Re-design the primer, change the position and length of the primer to enhance its specificity; or perform nested PCR.

A-2  Template DNA

——The template is not pure ——Purify the template or extract DNA with purification kits.

A-3  Mg2+ concentration

——Mg2+ concentration is too high ——Properly reduce Mg2+ concentration: Optimize the Mg2+ concentration by a series of reactions from 1 mM to 3 mM with an interval of 0.5 mM to determine the optimal Mg2+ concentration for each template and primer.

A-4  dNTP

——The concentration of dNTPs are too high ——Reduce the concentration of dNTP appropriately

A-5  Annealing temperature

——Too low annealing temperature ——Appropriately increase the annealing temperature

A-6  Cycles

——Too many cycles ——Optimize the cycle number

Q: How much template DNA should be added in a 50 μl PCR reaction system?
ytry
Q: How to amplify long fragments?

The first step is to choose the appropriate polymerase. Regular Taq polymerase cannot proofread due to lack of 3’-5’ exonuclease activity, and mismatch will greatly reduce the extension efficiency of fragments. Therefore, regular Taq polymerase cannot effectively amplify target fragments larger than 5 kb. Taq polymerase with special modification or other high fidelity polymerase should be selected to improve extension efficiency and meet the needs of long fragment amplification. In addition, the amplification of long fragments also requires corresponding adjustment of primer design, denaturation time, extension time, buffer pH, etc. Usually, primers with 18-24 bp can lead to better yield. In order to prevent template damage, the denaturation time at 94°C should be reduced to 30 sec or less per cycle, and the time to rise temperature to 94°C before amplification should be less than 1 min. Moreover, setting the extension temperature at about 68°C and designing the extension time according to the rate of 1 kb/min can ensure effective amplification of long fragments.

Q: How to improve the amplification fidelity of PCR?

The error rate of PCR amplification can be reduced by using various DNA polymerases with high fidelity. Among all the Taq DNA polymerases found so far, Pfu enzyme has the lowest error rate and the highest fidelity (see attached table). In addition to enzyme selection, researchers can further reduce PCR mutation rate by optimizing reaction conditions, including optimizing buffer composition, concentration of thermostable polymerase and optimizing PCR cycle number.


  • Previous:
  • Next:

  • product_certificate04 product_certificate01 product_certificate03 product_certificate02
    ×
    Write your message here and send it to us